
MIDTERM 1 REVIEW SOLUTIONS
INTRODUCTION:
The goal of this section will be to mix in the explanatory elements of a regular discussion with the more
personalized format of a guerilla section. When checking a group’s solutions, try to ask each member of the
group a question. You can break down the problem into multiple parts and spread your questions among the
group.

EXCEPTIONS

Q1 Except Me for Who I am

Q2 Volskaya Industries

TESTING
Q1 IntList Testing (Sp 15)

public class IntList {
 public int first;
 public IntList rest;

 public static IntList list(int… args) {...}

 @Override
 public boolean equals(Object o) {...}

 /** A method that destructively modifies the IntList to keep only
 * to keep only every other element. For example, (1,2,3,4,5) would
 * become (1,3,5)
 */
 public void skippify() {
 ...
 }
}

Write a JUnit test that verifies that skippify is working correctly on these two lists:

IntList A = IntList.list(1,2,3,4,5,6);

IntList B = IntList.list(3,4,3,6,3);

Solutions:

@Test
Public testSkippify() {
 IntList A = IntList.list(1,2,3,4,5,6);
 IntList B = IntList.list(3,4,3,6,3);
 IntList expectedA = IntList.list(1,3,5);
 IntList expectedB = IntList.list(3,3,3);
 A.skippify();
 B.skippify();
 assertEquals(expectedA, A);
 assertEquals(expectedB, B);
}

ASYMPTOTICS

Q1 Code-Analysis Runtime Q’s (from Quiz 7)
Determine the tightest runtime bounds for the following functions on the input N.

Q2 Conceptual Asymptotics Q’s

Order the following big-O runtimes from most to least efficient:

Solutions:

For each example below, there are two algorithms solving the same problem. Given the asymptotic runtimes
for each, is one of the algorithms guaranteed to be faster? If so, which? And if neither is always faster, explain
why. Assume the algorithms have very large input (so N is very large).

Guerilla Section 2 T/F

INTLISTS

Q1 hasCycle

Given an encapsulated IntList a, write a method that checks if it is circular.

Q2 Double in place
Without looking at your lab solutions, write a method that duplicates each node in this linked list destructively.
This list is implemented as a doubly linked list. As an extra exercise, implement this for an encapsulated
IntList.

/** DLList version */
public void doubleInPlace() {
 DLNode curr = sentinel.next;
 while (curr != sentinel) {
 DLNode dup = new DLNode(curr.item, curr, curr.next);
 dup.prev.next = dup;
 dup.next.prev = dup;
 curr = dup.next;
 }
}

/** Encapsulated IntList version */
public void doubleInPlace() {
 IntListNode curr = head;
 while (curr != null) {
 IntListNode dup = new IntListNode(curr.item, curr.next);
 curr.next = dup;
 curr = dup.next;
 }
}

Arrays

JAVA GRAB-BAG
Q1. What would Java Print?

Q2. Flibrocon

Q3. What Would Java Display?

