
STATIC/DYNAMIC TYPE AND BINDING

Definition of Types

Static type refers to the type that an object is declared as, while dynamic type refers to
the type that is instantiated:

Animal fido = new Dog();

Above, we see that fido is declared as an Animal and initialized as a Dog. Thus, its static type is
Animal, and its dynamic type is Dog. If you prefer box and pointer diagrams, you can think of
the static type as the box that is set aside for fido in the Stack. That box can hold the address
for anything that is an Animal. The dynamic type is the type of the object at the address that the
box actually points to. In this case, it is of type Dog.

Binding: Compile vs Run-time

Now that we know what static/dynamic type is, we start on the concept of static/dynamic
binding. Binding refers to the link between method call and method definition. In other words,
when a method is called, how do we know which method definition from which class to actually
use?

For the most part, during compile time, Java will use the static type of the object to see if
a method or variable exists. During run time, Java will use the dynamic type of the object to
actually choose the method or variable to use. This is called dynamic binding.

There are a few exceptions to this. Variables, static methods, private methods, and final
methods all use static binding. This means that during compile time, Java will use the static type
of the object to choose the variable or method to use during run-time.

Since static binding happens during compile-time, it is sometimes referred to as early
binding. Since dynamic binding happens during run-time, it is sometimes referred to as late
binding.

Here are a few classic examples of these concepts below:

class Animal {
 public void swim(){System.out.println(“Animal swim”);}

 public static wave() {System.out.println(“Animal wave”);}
}

class Dog{
 public void swim() {System.out.println(“Dog swim”);}

 public static wave() {System.out.println(“Dog wave”);}
}

Somewhere else…
 public static void main(String… args) {
 Animal fido = new Dog();
 fido.swim(); //Prints “Dog swim”
 fido.wave(); //Prints “Animal wave”
 }

Explanation:

● fido.swim():

During compile time, Java checks that the Animal class (the static type) does
indeed have the method swim with no arguments. During run time, Java looks
for a method swim with no arguments from the dynamic type’s class, Dog. Thus,
the Dog class’ swim method is called.

● fido.wave():
During compile time, Java checks that the Animal class (the static type) does
indeed have the method wave with no arguments. However, you’ll notice that
wave is a static method, and thus an exception to dynamic-binding. Since it is
one of the few types of methods that are statically bound, this means the method
is chosen in compile-time, based on the static type of the object. So, Java goes
ahead and binds the fido.wave() method call to the Animal class’
no-argument wave method during compile-time. Thus, when we later run the
main method, we already know to call the Animal class’ no-argument wave
method.

Casting
Casting allows us to change the static type of an object for one line only. Since this

changes static type, its effects are only in compile-time (although as you’ll see later,
compile-time effects may influence run-time).

You are allowed to cast any object into something within its family. As an example, you
can cast an Animal to a Dog (downcasting), or cast a Dog to a Animal (upcasting). Upcasting
is casting to a supertype, while downcasting is casting to a subtype. Upcasting is always
allowed, but downcasting can throw a ClassCastException if you do an incorrect cast (for
example if something is of dynamic type Animal and you’ve cast it to a Dog, you will get this
exception).

You may find casting to be useful if, for whatever reason, some object you’re working
with comes in with a static type that is not specific enough. There are, of course, a few dangers
to this:

class Animal {
 public void swim(){System.out.println(“Animal swim”);}

 public static wave() {System.out.println(“Animal wave”);}
}

class Dog{
 public void swim() {System.out.println(“Dog swim”);}

 public void bark() {System.out.println(“Woof”);}
}

Version 1:
 public static void main(String… args) {
 Animal fido = new Dog();
 fido.bark(); //Gives a compile-time error
 }

Version 2:
 public static void main(String… args) {
 Animal fido = new Dog();
 ((Dog) fido).bark(); //Prints “Woof”

 Animal beast = new Animal();
 ((Dog) beast).bark(); //RunTimeException: ClassCastException
 }

● fido.bark():

As you can see, in Version 1, we get a compile-time error. This is because fido is of
static type Animal. So, in compile-time, Java will look for a no-argument method called
bark in the Animal class. This does not exist, so a compile-time error occurs.

● ((Dog) fido).bark():

In Version 2, we avoid this by casting fido into a Dog. So, in compile time, fido’s static
type is temporarily changed to Dog for that one line. Thus, we look in the Dog class for a
no-argument method called bark, and successfully find such a method. Thus, it passes
compile-time. During run-time, Java uses the Dog dynamic type of fido to call bark().
Thus, “Woof” is printed out.

● ((Dog) beast).bark():

In the final example, we make a beast that is of static and dynamic type Animal. Since
we cast beast to a Dog, its static type is changed to Dog for that one line. Thus, during
compile-time Java uses the Dog static type of beast, confirms that there is a
no-argument method called bark within the Dog class, and allows this to pass the
compile-time check as well. However, during run time, you’ll get a ClassCastException
because the actual, dynamic type of beast is Animal. Thus, casting it to a Dog is an
error.

Overloaded and Overriden Methods (Definition)

Be aware the overloaded methods are statically bound in compile-time, while overriden
methods are dynamically bound in run-time.

In the example above (with Animal and Dog), swim and wave are both overriden
methods in the Dog class.

There’s one more tricky thing that happens with overloaded and overriden methods.
Thus far, we haven’t talked about methods that are both overloaded and overriden. Examine the
code on the next page:

https://stackoverflow.com/questions/12374399/what-is-the-difference-between-method-overloading-and-overriding

public class Parent {
 public void greet(Parent p) {
 System.out.println("Parent greet Parent");
 }

 public void greet(Child c) {
 System.out.println("Parent greet Child");
 }
}

public class Child extends Parent {
 public void greet(Parent p) {
 System.out.println("Child greet Parent");
 }

 public void greet(Child c) {
 System.out.println("Child greet Child");
 }
}

Notice how greet is overloaded (it can take in a Child or a Parent), and overriden

(the Child class redefines the method). Pay attention to what we call the “method signature”:
the method name and the number/type of the arguments it takes in. In this case, we have two
method signatures: greet(Parent p), and greet(Child c)

Okay, so let’s run the main method below:

public static void main(String[] args) {
 Parent c1 = new Child();
 c1.greet(c1); //Prints "Child greet Parent"
 c1.greet((Child) c1); //Prints "Child greet Child"

 Child c2 = new Child();
 c2.greet(c1); //Prints "Child greet Parent"
}

Does the output of these methods surprise you?

This is because, during compile time, Java does not just check if the static type class has the
method in question. Java also remembers the method signature that is found during compile
time.

● Let’s examine the case of c1.greet(c1):
During compile time, Java will check that the static class, Parent, does indeed have a

greet method that can take in a Parent type (remember, c1’s static type is Parent, so we are
looking for an argument that can take in a Parent). We successfully find a greet method that
takes in a Parent as an argument. We then save this method signature for later. During
run-time, Java will use the dynamic type of c1, Child, to find a method with the same method
signature that we saved before. Thus, within the Child class we look for a greet method that
can take in a Parent type. This is why “Child greet Parent” is printed out.

● Next, we look at c1.greet((Child) c1):
We cast the argument of greet to have the static type of Child for that line only. So,

we look at the static class of c1, Parent, to find a greet method that takes in a Child type.
We successfully find a greet method that takes in a Child as an argument. We then save this
method signature for later. During run-time, Java uses the dynamic type of c1, Child, to find a
method with the same method signature that we saved for this line. Thus, within the Child
class we look for a greet method that can take in a Child type. This is why “Child greet Child”
is printed out with the cast.

● Finally, let’s examine c2.greet(c1):
During compile time, Java will check that the static class, Child, does indeed have a

greet method that can take in a Parent type (again, c1’s static type is Parent, so we are
looking for an argument that can take in a Parent). We successfully find a greet method that
takes in a Parent as an argument. We then save this method signature for later. During
run-time, Java will use the dynamic type of c1, Child, to find a method with the same method
signature that we saved before. Thus, within the Child class we look for a greet method that
can take in a Parent type. This is why “Child greet Parent” is printed out.

