
Midterm 2 Review

Note: There are many tricky problems in CS61BL Summer 2016 Midterm 2!

Streams

Intermediate Operations to Know

1. stream(): Converts a collection into a stream

2. sorted(Comparator c): Sorts the stream using c, which can also be a lambda

3. map(Function f)(): Applies f to each element in the stream

4. filter(Predicate p): Tests each element with p to see if it should remain in the stream

Terminal Operations to Know

1. reduce(BinaryOperator accumulator): Applies the accumulator and combines the ele-
ments in the stream, two at a time. Returns an Optional.

2. collect(Collector c): Turns the stream into a collection.

• To a List: Collectors.toList()

• To a Set: Collectors.toSet()

• To a Map: Collectors.grooupingBy(Function f)

3. forEach(Consumer action)

Practice Problems

Given the following classes, write methods to perform the desired operations. You may only use
one semicolon per method.

public class Student {

public int getLabSection() { ... }

public int getAge() {...}

public Group getGroup {...}

}

public class Group {

public int size() {...}

public Group merge(Group other) { ... }

}

1



1. Collect all the unique lab sections from a list of students. There should not be duplicates.

public Collection<Integer> uniqueSections(List<Student> lst) {

}

2. Each TA submits a list of their students. Write a method that will map each lab section to
the students in that section whose group is larger than size 4. Assume there is always at least
one student in each section whose group size is larger than 4.

public Map<Integer, List<Student>> grpMap(List<List<Student>> lst) {

}

3. Each TA submits a list of their students. Write a method that will get the number of students
who are over age 20.

public int over20 (List<List<Student>> lst) {

}

4. Each TA submits a list of the groups in their section. Write a method that will keep only the
sections with less than 4 groups in them. Then, merge all the groups in a section into one
supergroup. If some section has 0 groups, then leave that section’s supergroup as null instead.
You should end up with a list of supergroups. (Use the merge method of the Group class)

public List<Group> groupmerge(List<List<Group>> lst) {

}

2



Higher Order Functions

• Function objects that can be passed around to other functions

• Pass method references using ‘::’ (User::getAge, no parentheses!)

• Function<T, R> Interface:

– R apply(T item): will apply function on item of type T, returning a value of type R.

– User::getAge is a Function<User, Integer> object; it takes in a User object and
returns the integer age of that User object

• Predicate<T> Interface:

– boolean test(T item): will test the predicate on item of type T, returning true or
false. (pred.test(o1))

Lambda Functions

• Can create anonymous functions, and can be used in place of objects that implement a func-
tional interface (ex. Comparator)

• (arguments) -> (expression)

• (u1, u2) -> (u1.getAge() - o2.getAge())

Interfaces and Abstract Classes

Interfaces Abstract classes
- public interface (interfaceName) - public abstract class (className)
- can implement many interfaces - can extend only one class
- cannot be instantiated - cannot be instantiated
- static and final variables only - can have variables
- all methods are abstract (unless noted as
default)

- all methods are default methods unless
noted abstract

- access modifier is public - access modifier can be anything but private

3



Iterators/Generics

Generics

• Like in normal functions that take in function arguments, one can think of generics as type
arguments. If one specifies a specific type as the generic T, any T that appears within the
class will be replaced with the specified type.

• Generics can be specified with any word, though the convention is that a generic type is
represented as a capital letter. (ex. T)

Interface Contract

1. Iterator<T>

• T hasNext(): Returns if there are values left to return from this Iterator. Should not
change the state of the iterator.

• T next(): Calculates and returns the next value. If there are no elements left to return,
should throw an NoSuchElementException.

• T remove(): Default method, implemented to throw UnsupportedOperationException.
Can override this method if desired.

• Any class that implements this interface should contain state-saving variables to keep
track of where the Iterator object is in the iteration. One analogy is that the data one
is iterating through is a book and the iterator should be used as a bookmark. It may be
useful to set up invariants (statements that should always be true) for the state-saving
variables.

2. Iterable

• Iterator<T> iterator(): This method returns an Iterator<T> object. The returned
Iterator object will iterate over the specified type T.

• Any class that implements this interface can be used in the enhanced for loop. The for

loop will implicitly create an Iterator object from what is on the right-hand-side of
the colon, and save what is outputted from next to the object defined on the left-hand-
side, so long as hasNext() outputs true. The two iteration schemes shown below are
identical.

ArrayList<Amoeba> amoebas = ...; Iterator i = o.iterator();

for (Amoeba a : amoebas) { while (i.hasNext()) {

do something with a do something with i.next()

} }

4



Practice Problems

1. We have a FunkyRestaurant that serves LambSkewer and Tsingtao in alternating turns. If
the restaurant runs out of either one, it should just serve the other until it completely runs
out of food. (This is slightly different from quiz 10)

LambSkewer and Tsingtao are subtypes of Food. Fill out the code as necessary.

public class FunkyRestaurant implements Iterable<Food> {

Iterable<LambSkewer> lambSkewers = ...;

Iterable<Tsingtao> tsingtao = ...;

@Override

public Iterator<_________> iterator() {

Iterator<___________> lambIter = lambSkewers.iterator();

Iterator<___________> tsingtaoIter = tsingtao.iterator();

return new FoodIterator<______________>(lambIter, tsingtaoIter);

}

}

public class FoodIterator<T1 extends _______, T2 extends ________>

implements Iterator<_____________> {

Iterator<T1> iter1;

Iterator<T2> iter2;

____________________________________________

public FoodIterator(Iterator<T1> iter1, Iterator<T2> iter2) {

this.iter1 = iter1;

this.iter2 = iter2;

____________________________________________

}

@Override

public boolean hasNext() {

________________________________________________________________

}

@Override

public ________ next() {

}

}

5



2. Given a BinaryTree, MaxIterator should repeatedly iterate through the child with the largest
item. For example, for the following BinaryTree.

Repeatedly calling next() should return 4, 5, 6, 2.

public class MaxIterator implements Iterator<Integer> {

___________________________;

public MaxIterator(BinaryTree tree) {

___________________________;

}

public boolean hasNext() {

___________________________;

}

public ________ next() {

TreeNode temp = ___________;

if(___________________) {

________________________;

} else if(___________________) {

_________________________;

} else {

if(__________________________) {

_____________________;

} else {

_____________________;

}

}

return ___________;

}

}

6



Comparable/Comparator

• Comparable<T>

– int compareTo(T o): If this object is less than the given o, returns a negative value.
Else if this object is greater than the give o, returns a positive values. Else, returns 0.

• Comparator<T>

– Any object that implements Comparator<T> will take two objects and compare them.
Think about this object as a third-party that will compare the objects.

– int compare(T o1, T o2): If this object is less than the given o, returns a negative
value. Else if this object is greater than the give o, returns a positive values. Else,
returns 0.

– This is a functional interface (only has one method in it). Thus, we can use higher order
functions (lambda functions, method references, etc.) in place of a Comparator object.

7



Asymptotics

Practice Problems

1. Asymptotic Analysis: for the following methods, give the runtime in terms of N

public void f1 (int N) {

if (N > 0) {

for (int i = 0; i < N; i++) {

System.out.println("hello");

}

f1(N/2);

}

}

public int f2 (int N) [

if (N <= 1) {

return N;

}

return f2(N-1) + f2(N-1);

]

2.3. For each statement, answer true or false. If true, explain why and if false provide a counterex-
ample.

• If f(n) ∈ O(n2) and g(n) ∈ O(n) are positive-valued functions (that is for all n, f(n), g(n) >

0), then f(n)
g(n)
∈ O(n).

• If f(n) ∈ Θ(n2) and g(n) ∈ Θ(n) are positive-valued functions, then f(n)
g(n)
∈ Θ(n)

8



4. Data Structure Runtimes
For each of the following data structures, fill in the runtime for each of the listed operations.
Specify what the best and worst case runtime scenarios are as well

• ArrayList

add:
add to front:
get:

• LinkedList

add:
add to front:
get:

• HashMap

With no assumptions made:
put:
get:

Assuming a good hash code:
put:
get:

Assuming no resizing:
put:
get:

• BinarySearchTree

With no assumptions made:
insert:
contains:

Assuming a balanced tree:
insert:
contains:

• 2-3-4/RB Tree

insert:
contains:

• SplayTree

With no assumptions made:
insert:
contains:
Assuming we are accessing recently used items:
insert:
contains:

9



Search Trees

• For each node n, all values in the left subtree of n are less than the values at n. All values in
the right subtree of n are greater than the values of n.

• Binary Search Trees

– Each node can have 0, 1, or 2 children.

– Methods to know: insert(T item), remove(T item), contains(T item)

• Balanced Search Trees

– 2-3-4 Trees

∗ Motivation: Sometimes, our trees can become too tall so we instead stuff many
items per node to decrease the height of our tree.

∗ Put up to three items per node. Each node can have 2, 3, or 4 children. Increasing
the height will take, on average, many insertions. Not responsible for removal.

∗ To insert:

· Traverse down the tree from root to leaf to find the correct place to put n

· If you ever encounter a node with 3 items as you traverse down the tree, split
that node by kicking up the middle item and creating two new nodes from the
left and right items. Then reconnect the pointers of the nodes, maintaining the
search tree property.

· Once you are at a leaf, insert n in its correct spot in the leaf node.

– Red-Black Trees

∗ Motivation: 2-3-4 trees are hard to implement. Instead, have the same idea as a
2-3-4 tree but represent it in a binary tree with red and black nodes.

∗ A red node means that it is a B-tree node with the parent node. Won’t be responsible
for inserting and removing from a red-black tree. Can translate any red-black tree
into a 2-3-4 tree, insert into the 2-3-4 tree, and then translate back the the red-black
tree.

– Splay Trees

∗ Main Idea: We have a binary search tree, but any time we do some get, put, or
remove operation on some node n, we splay the node n (or the parent of n in the
case of remove). If the node n is not found, the node that the search was terminated
on will be splayed.

∗ Splaying a node n means we do a series of rotations to make n the root of the tree.
Although this isn’t the same kind of balancing that 2-3-4 trees do, it allows for a
special feature: locality of reference.

∗ Locality of reference: items that are accessed the most are going to be near the top
of the tree, allowing for faster accesses!

∗ Rotations

· rotateLeft(x): rotate x left through its parent

10



· rotateRight(x): rotate x right through its parent

· Analogy: Pick up the x node and allow other nodes to fall, reassign the middle
pointer to the correct place.

∗ splayNode(Node n): To splay some node n, we must do as many rotations on n
needed until it becomes the root. For any node n, we consider the position of its
parent node p, and its grandparent node g to figure out what kind of rotation we
need to do. Here are three cases you’ll run into when you rotate n:

· Zig-Zag: can only occur when n is the right child of p which is the left child of
g. Will consist of rotateLeft(n) and rotateRight(n).

· Zig-Zig: can only occur when n is the right child of p which is a right child of g.
Will consist of rotateLeft(p) and rotateLeft(n). We must rotate the parent
first

· Zig: can only occur when n is the right child of p, the root of the tree. Will
consist of one rotateLeft(n).

· Note: All these operations have a symmetric operation by swapping all ‘left’s
with ‘right’s and vice versa.

11



Practice Problems

1. Binary Search Trees: Snip
Assume that BST is as defined in lab. Fill in the function below so that any nodes with value

greater than limit are destructively removed from the tree. Your implementation must not
create any new nodes. Do not change the value of the nodes themselves.

public static BST<Integer> trimHigh(BST<Integer> bst, int limit) {

if (_________________) {

___________________________________________________

} else if (_________________) {

___________________________________________________

} else {

___________________________________________________

___________________________________________________

}

}

2. Binary Tree Traversal
write a method in the BinaryTree class that returns the items of the tree in reverse BFS
order. The method should return an ArrayList of items. Assume root is not null.

public Arraylist<Object> reverseBFS() {

}

12



3. Binary Trees: Symme-tree
Given a binary tree, write a method isSymmetric that will check whether the tree is a mirror
of itself (i.e. symmetric around its center). You may not need all the lines.

public class BinaryTree<T> {

protected TreeNode root;

protected class TreeNode {

public T value;

public TreeNode left;

public TreeNode right;

}

public boolean isSymmetric() {

__________________________________________________________

__________________________________________________________

__________________________________________________________

__________________________________________________________

}

private boolean isSymmetric(TreeNode left, TreeNode right) {

if (_____________________________) {

__________________________________________________________

} else if (_____________________________) {

__________________________________________________________

} else if (_____________________________) {

__________________________________________________________

} else {

__________________________________________________________

__________________________________________________________

__________________________________________________________

}

}

}

13



Hashing

• Main Idea:

– Use an array to keep track of values.

– The index at which we put values will be based on hashCode() % array.length.

– A tactic called external chaining will be used to keep track of multiple values in a par-
ticular bucket.

– Load factor is defined as
num items in array

size of array , and each HashMap will keep track of its

maximum load factor. Once the load factor of the HashMap exceeds the maximum load
factor, it will resize (usually by doubling the size of the array).

– Most operations are constant time, though the resize operation will take linear time due
to needing to re-hash all the elements of the data structure.

• hashCode(): An integer that represents a particular value. Can be used as an index within
a hash map when modded by the length of the internal array. Should not be confused with
being the actual index of the item in the HashMap (remember items can return negative values
or super large values).

– Validity:

∗ If two objects are .equals(), then their hashCodes are the same.

∗ If hashCode() is called multiple times on a single object, the hashCode() shouldn’t
change.

– Goodness:

∗ Must be valid before it can be considered good.

∗ Evenly distribute values.

∗ Shouldn’t be too expensive to compute relative to the size of the given key.

∗ Shouldn’t rely on values that can change, based on your implementation of the
object.

14



Data Structure Choices

Which data structure is best for the following:

1. A text editor history function that should has undo and redo functionality.

2. Given a file with a list of people and their corresponding ages, count the number of unique
ages.

3. Given a list of reservations ordered by time, retrieve the ith earliest reservation.

4. A cache. Caches should save all added items and be very fast for frequent queries.

15


