
MIDTERM 1 REVIEW WORKSHEET

EXCEPTIONS
Takeways:

● Checked vs Unchecked
● When to use try/catch statements
● When to add ‘throws’ into method headers
● How to create a new Exception object and throw it

Q1 Except Me for Who I Am (Also on Guerilla Section 2 Summer 2017)

Q2 Volskaya Industries (Summer 2016 Midterm 1)

TESTING
Takeaways:

● How to use the JUnit methods effectively
● Popular Methods

○ Void assertTrue(boolean condition);
○ Void assertNull(Object obj);
○ Void assertNotNull(Object obj);
○ Void assertEquals(Object expected, Object actual)
○ Void fail() //automatically fails the test

Q1 IntList Testing (Sp 15)

public class IntList {
 public int first;
 public IntList rest;

 public static IntList list(int… args) {...}

 @Override
 public boolean equals(Object o) {...}

 /** A method that destructively modifies the IntList to keep only
 * to keep only every other element. For example, (1,2,3,4,5) would
 * become (1,3,5)
 */
 public void skippify() {
 ...
 }
}

Write a JUnit test that verifies that skippify is working correctly on these two lists:

IntList A = IntList.list(1,2,3,4,5,6);

IntList B = IntList.list(3,4,3,6,3);

ASYMPTOTICS
Takeaways:

● O, Omega, Theta Definitions
● What it means to consider different ‘cases’; that asymptotics by definition refers to the variable growing

very large. We do not care about specific values of the variable.
● How to approach free-response questions
● How to approach code-analysis questions
● Remember the useful summations, log rules, and the ordering of the most common functions

Q1 Code-Analysis Questions (Quiz 7)
Determine the tightest runtime bounds for the following functions on the input N.

Q2 Conceptual Problems (Sp17 Discussion, and Su17 Guerilla Section 2)

Order the following big-O runtimes from most to least efficient:

For each example below, there are two algorithms solving the same problem. Given the asymptotic runtimes
for each, is one of the algorithms guaranteed to be faster? If so, which? And if neither is always faster, explain
why. Assume the algorithms have very large input (so N is very large).

Guerilla Section 2, True/False Questions

LINKED LISTS
Takeaways:

● Be familiar with the different implementations of linked lists (simple IntList, encapsulated, doubly-linked)
● Understand common structures with these problems, and problem-solving styles

○ Usually we check (lst == null) or (lst == sentinel)
○ Draw out box and pointer diagrams BEFORE writing code. Try to walk through how you will

manipulate pointers, and in what order. Do this at some point in the middle of the list.
○ Don’t be afraid to create pointers.

● Quick warnings:
○ At the end, make sure you have your edge cases covered (for encapsulated, this would be if

head==null; for simple IntLists, this would be if lst==null)
○ Be wary if the method is static or nonstatic. This will affect how you access instance variables

and methods
○ Read the instructions carefully. Is this a destructive or non-destructive method? If it’s

non-destructive, you should be calling new IntList(). If it’s destructive, make sure you don’t
create new IntList objects (making IntList pointers is okay, though!)

○ Avoid (next != null) as this will often give you off-by-one errors.
○ Don’t use methods that we don’t provide you! (Like size and get)

● Draw the objects for you box-and-pointer diagrams well!!!!

Quick Exercise: Draw the sequence (1, 2, 3) for the three types of Linked Lists:

1. Simple IntList

2. Encapsulated IntList

3. Doubly-Linked List

Q1 hasCycle

Given an encapsulated IntList a, write a method that checks if it is circular.
Do not use any methods of IntList

public static boolean hasCycle(IntList a) {
 if (_____________________) {
 return false;
 }
 IntListNode slow = ____________________;
 IntListNode fast = ____________________;
 while (___________________________) {
 slow = _______________________;
 fast = _______________________;
 if (__________________________) {
 return true;
 }
 }
 return ___________________________;
}

Q2 Double In Place (from lab 6)

Without looking at your lab solutions, write a method that duplicates each node in this linked list destructively.
This list is implemented as a doubly linked list

public void doubleInPlace() {

}

*As an additional exercise, write doubleInPlace for an encapsulated linked list. You can reuse a lot of
code from your solution to the above problem, so this is actually a short exercise!

public void doubleInPlace() {

}

ARRAYS
Takeaways:

● Indexing goes from 0 to length-1, inclusive.
● Remember that arrays are not Objects. They don’t have instance methods that you can call.
● Be familiar with indexing into 2D arrays
● Be familiar with the default values for arrays of any type (primitives have their own default values,

references have default value of null)

Q1. ArrayHorse

JAVA GRAB-BAG
Takeaways:

● The difference between Java primitives and references. What the Java heap is, and the idea of ‘bit
copying’. Be sure you can draw box and pointer diagrams for these!

● Inheritance: what it means to extend a parent class and override methods
○ Implicit calls from the child’s constructor to the parent’s constructor!
○ super vs. this, and making calls to your parent’s methods or constructors

● Static/Dynamic type, and how Java chooses which methods/variables to use:
When is each used?

What are the exceptions?

● How casting changes the static type. Possible issues that may come with casting (run-time exceptions!)
● Access Modifiers and Scope.

What is the order of scope?

Access Modifiers:

Modifier Class Package Subclass World

public Yes Yes Yes Yes

protected Yes Yes Yes No

no modifier Yes Yes No No

private Yes No No No

● Static vs. Nonstatic variables and methods; in other words, class vs. instance variables and methods

Q1. What Would Java Print?
What is the full output of attempting to compile and run the following programs? If an error or exception occurs,
just specify if it is a runtime or compile-time error. You should still write the output of lines that execute before
any runtime exceptions occur.

