
MIDTERM 1 REVIEW WORKSHEET

EXCEPTIONS
Takeways:

● Checked vs Unchecked
● When to use try/catch statements
● When to add ‘throws’ into method headers
● How to create a new Exception object and throw it

Q1​ Except Me for Who I Am (Also on Guerilla Section 2 Summer 2017)

Q2​ Volskaya Industries (Summer 2016 Midterm 1)

TESTING
Takeaways:

● How to use the JUnit methods effectively
● Popular Methods

○ Void assertTrue(boolean condition);
○ Void assertNull(Object obj);
○ Void assertNotNull(Object obj);
○ Void assertEquals(Object expected, Object actual)
○ Void fail() //automatically fails the test

Q1​ IntList Testing (Sp 15)

public class IntList {
 public int first;
 public IntList rest;

 public static IntList list(int… args) {...}

 @Override
 public boolean equals(Object o) {...}

 /** A method that destructively modifies the IntList to keep only
 * to keep only every other element. For example, (1,2,3,4,5) would
 * become (1,3,5)
 */
 public void skippify() {
 ...
 }
}

Write a JUnit test that verifies that skippify is working correctly on these two lists:

IntList A = IntList.list(1,2,3,4,5,6);

IntList B = IntList.list(3,4,3,6,3);

ASYMPTOTICS
Takeaways:

● O, Omega, Theta Definitions
● What it means to consider different ‘cases’; that asymptotics by definition refers to the variable growing

very large. We do not care about specific values of the variable.
● How to approach free-response questions
● How to approach code-analysis questions
● Remember the useful summations, log rules, and the ordering of the most common functions

Q1 ​Code-Analysis Questions (Quiz 7)
Determine the tightest runtime bounds for the following functions on the input N.

Q2​ Conceptual Problems (Sp17 Discussion, and Su17 Guerilla Section 2)

Order the following big-O runtimes from most to least efficient:

For each example below, there are two algorithms solving the same problem. Given the asymptotic runtimes
for each, is one of the algorithms ​guaranteed​ to be faster? If so, which? And if neither is always faster, explain
why. Assume the algorithms have very large input (so ​N​ is very large).

Guerilla Section 2, True/False Questions

LINKED LISTS
Takeaways:

● Be familiar with the different implementations of linked lists (simple IntList, encapsulated, doubly-linked)
● Understand common structures with these problems, and problem-solving styles

○ Usually we check ​(lst == null) ​or ​(lst == sentinel)
○ Draw out box and pointer diagrams BEFORE writing code​. Try to walk through how you will

manipulate pointers, and in what order. Do this at some point in the middle of the list.
○ Don’t be afraid to create pointers.

● Quick warnings:
○ At the end, make sure you have your edge cases covered (for encapsulated, this would be if

head==null​; for simple IntLists, this would be if ​lst==null​)
○ Be wary if the method is static or nonstatic. This will affect how you access instance variables

and methods
○ Read the instructions carefully. Is this a destructive or non-destructive method? If it’s

non-destructive, you should be calling ​new IntList()​. If it’s destructive, make sure you don’t
create new ​IntList​ objects (making ​IntList​ pointers is okay, though!)

○ Avoid (​next != null​) as this will often give you off-by-one errors.
○ Don’t use methods that we don’t provide you! (Like ​size ​and ​get​)

● Draw the objects for you box-and-pointer diagrams well!!!!

Quick Exercise​: Draw the sequence (1, 2, 3) for the three types of Linked Lists:

1. Simple IntList

2. Encapsulated IntList

3. Doubly-Linked List

Q1​ hasCycle

Given an ​encapsulated​ ​IntList ​a​, ​write a method that checks if it is circular.
Do not use any methods of ​IntList

public static boolean hasCycle(IntList a) {
 if (_____________________) {
 return false;
 }
 IntListNode slow = ____________________;
 IntListNode fast = ____________________;
 while (___________________________) {
 slow = _______________________;
 fast = _______________________;
 if (__________________________) {
 return true;
 }
 }
 return ___________________________;
}

Q2​ Double In Place (from lab 6)

Without looking at your lab solutions, write a method that duplicates each node in this linked list destructively.
This list is implemented as a ​doubly linked list

public void doubleInPlace() {

}

*​As an additional exercise, write ​doubleInPlace​ for an encapsulated linked list. You can reuse a lot of
code from your solution to the above problem, so this is actually a short exercise!

public void doubleInPlace() {

}

ARRAYS
Takeaways:

● Indexing goes from 0 to ​length-1​, inclusive.
● Remember that ​arrays​ are not Objects. They don’t have instance methods that you can call.
● Be familiar with indexing into 2D arrays
● Be familiar with the default values for arrays of any type (primitives have their own default values,

references have default value of ​null​)

Q1. ​ArrayHorse

JAVA GRAB-BAG
Takeaways:

● The difference between Java primitives and references. What the Java heap is, and the idea of ‘bit
copying’. Be sure you can draw box and pointer diagrams for these!

● Inheritance: what it means to extend a parent class and override methods
○ Implicit calls from the child’s constructor to the parent’s constructor!
○ super ​vs. ​this​, and making calls to your parent’s methods or constructors

● Static/Dynamic type, and how Java chooses which methods/variables to use:
When is each used?

What are the exceptions?

● How casting changes the static type. Possible issues that may come with casting (run-time exceptions!)
● Access Modifiers and Scope.

What is the order of scope?

Access Modifiers:

Modifier Class Package Subclass World

public Yes Yes Yes Yes

protected Yes Yes Yes No

no modifier Yes Yes No No

private Yes No No No

● Static vs. Nonstatic variables and methods; in other words, class vs. instance variables and methods

Q1​.​ What Would Java Print?
What is the full output of attempting to compile and run the following programs? If an error or exception occurs,
just specify if it is a runtime or compile-time error. You should still write the output of lines that execute before
any ​runtime​ exceptions occur.

