MIDTERM 1 REVIEW SOLUTIONS
INTRODUCTION:
The goal of this section will be to mix in the explanatory elements of a regular discussion with the more
personalized format of a guerilla section. When checking a group’s solutions, try to ask each member of the
group a question. You can break down the problem into multiple parts and spread your questions among the

group.

EXCEPTIONS

Q1 Except Me for Who | am

Consider the following:

1 | public class IntList {

2 private int head;

a private IntlList tail;

4

s /* Returns the index of an element in the list =*/
& public int getIndex(int item) {

7 int index = @;

8 IntList temp = this;

g while (temp.head != item) {

n temp = temp.tail;

11 index++;

12 }

13 return index;

14 }

15

18 public int getIndexThrowException(int item) throws IllegalArgumentException {
17 /{/ YOUR CODE HERE

18 3

19

20 public int getIndexDefaultNegative(int item) {
21 // YOUR CODE HERE

22 1

23 |}

(a) What happens when you call getIndex(int item) on an element that is not in the list?
You will run into a NullPointerException.

(b) Write getIndexThrowException, which attempts to get the index of an item, but throws an
IllegalArgumentException with a useful message if no such item exists in the list. Do not use if
statements, while loops, for loops, or recursion. (Hint: vou can use get(int item))

(¢) Write getIndexDefaultNegative, which attempts to get the index of an item, but returns -1 if no such
item exists in the list. Again, do not use if statements, while loops, for loops, or recursion.

public int getIndexThrowException(int item) throws IllegalArgumentException {
try {
int index;
index = getIndex(item);
return index;
} catch (NullPointerException e) {
throw new IllegalArgumentException("Tried to access a null object");

public int getIndexDefaultNegative(int item) {
try {
int index;
index = getlndex(item);
return index;
} catch (NullPointerException e) {
return -1;

Q2 Volskaya Industries

a. Baddice Einer wants to update his SuperArray data structure to add the trim() method, which makes null
values at the end of the array disappear, similar to trimming an ArrayList down to size. For example, {1, 2,
null, null} would trimto {1, 2}.

However, there's one issue. If the array is fragmented, which means there are null values in between non-null
values rather than just at the end (e.g. {1, null, 2, 3}), trimming the array will not remove all the null
values. Help him throw a FragmentationException with an error message when this happens. This
exception should be handled by the user of SuperArray and should not directly cause the program to exit. (You
may not need all lines.)

public class SuperArray {

private Object[] arr;

public
public
public
public

public

SuperArray(int size) { arr = new Object[size]; }
int length() { return arr.length; }

Object get(int i) { return arr[i]; }

void set(Object o, int i) { arr[i] = o; }

class FragmentationException extends Exception {

public FragmentationException (String msg) {

super(msg);

}
}
public void trim() throws FragmentationException {
boolean fragmented = false;
int trim_to = -1;
// Finds if the array is fragmented. Assume this works properly.
for (int i = arr.length - 1; i >=0; i--) {
if (arr[i] != null && trim to == -1) trim to = ij;
if (trim_to != -1 &% arr[i] == null) fragmented = true;
}
if (fragmented) {
String messageToPrint = "OMGZOR Fragmentation!!!!";
throw new FragmentationException(messageToPrint);
}
arr = Arrays.copyOfRange(arr, @, trim_to);
}

TESTING
Q1 IntList Testing (Sp 15)

public class IntList {
public int first;
public IntList rest;

public static IntList list(int... args) {...}

@Override
public boolean equals(Object o) {...}

/** A method that destructively modifies the IntList to keep only
* to keep only every other element. For example, (1,2,3,4,5) would
* pecome (1,3,5)
*/

public void skippify() {

}

Write a JUnit test that verifies that skippify is working correctly on these two lists:
IntList A IntList.list(1,2,3,4,5,6);
IntList B IntList.1list(3,4,3,6,3);

Solutions:

@Test

Public testSkippify() {
IntList A IntlList.list(1,2,3,4,5,6);
IntList B = IntList.list(3,4,3,6,3);
IntList expectedA = IntList.list(1,3,5);
IntList expectedB = IntList.list(3,3,3);
A.skippify();
B.skippify();
assertEquals(expectedA, A);
assertEquals(expectedB, B);

ASYMPTOTICS

Q1 Code-Analysis Runtime Q’s (from Quiz 7)
Determine the tightest runtime bounds for the following functions on the input N.

void mysteryl(int N) {
for (int i = 1; i <= N * N; i x= 2) {
for (int j = 0; j < i; j++) {
System.out.println("moo");

}
}

Answer:
1.5 points: O(N?)

int mystery2(int N) {
if (N == 0)
return O;
return mystery2(N/3) + mystery2(N/3) + mystery2(N/3);

Answer:
1.5 points: O(NV)

Q2 Conceptual Asymptotics Q’s

Order the following big-O runtimes from most to least efficient:

O(logn), O(1), O(n"), O(n?), O(nlogn), O(n), O(n!), O(2"), O(n*logn)
Solutions:

O(1) ¢ O(logn) C O(n) C O(nlogn) C O(n’logn) C O(n*) C 012" C On!) Cc O")

For each example below, there are two algorithms solving the same problem. Given the asymptotic runtimes
for each, is one of the algorithms guaranteed to be faster? If so, which? And if neither is always faster, explain
why. Assume the algorithms have very large input (so N is very large).

(a) Algorithm 1: ®(N), Algorithm 2: ®(N?)
(b) Algorithm 1: Q(N), Algorithm 2: Q(N?)
(c) Algorithm 1: O(N), Algorithm 2: O(N?)
(d) Algorithm 1: ®(N?), Algorithm 2: O(logN)
(e) Algorithm 1: O(NlogN), Algorithm 2: Q(NlogN)
(a) Algorithm 1: ®(N) - ® gives tightest bounds therefore the slowest algorithm 1 could run is
relative to N while the fastest algorithm 2 could run is relative to N2.

(b) Neither, Q(N) means that algorithm 1’s running time is lower bounded by N, but does not
provide an upper bound. Hence the bound on algorithm 1 could not be tight and it could also
be in Q(N?) or lower bounded by N2.

(c) Neither, same reasoning for part (b) but now with upper bounds. O(N?) could also be in O(1).

(d) Algorithm 2: O(logN) - Algorithm 2 cannot run SLOWER than O(log N) while Algorithm 1
is constrained on to run FASTEST and SLOWEST by ®(N?).

(e) Neither, Algorithm 1 CAN be faster, but it is not guaranteed - it is guaranteed to be "as fast as
or faster" than Algorithm 2.

Guerilla Section 2 T/F

(a) True or false: if f(N) € O(N) and g(N) € O(N?), and both functions are non-negative, then |g(N) —
f(N)| € Q(N). if true, explain why; otherwise, give a counterexample.
False: Consider f(N)=g(N)=N

(b) True or false: if f(N) € (N) and g(N) € (N?), and both functions are non-negative, then |g(N) —
f(N)| € Q(N). If true, explain why; otherwise give a counterexample.
True: Since g(N) € 6(N?), it is also in Q(N), while f(N) € O(N). Since g grows at least as N*, and
O(N) quantity is eventually negligible in comparison.

INTLISTS

Q1 hasCycle
Given an encapsulated IntList a, write a method that checks if it is circular.

VeSS
*
* @param a is an IntList
x @return true iff a is circular, which means it has an IntListNode
* whose next pointer points to a previous IntListNode
*/
public static boolean hasCycle(IntList a) {
if (a2 == null || a.head == null) {
return false;
b
IntListNode slow = a.head H
IntListNode fast = a.head H
while (fast != null && fast.next != null) {

slow = slow.next :
fast = fast.next.next 3
if (slow == fast) o
return true;
}
¥
return false s

Q2 Double in place

Without looking at your lab solutions, write a method that duplicates each node in this linked list destructively.
This list is implemented as a doubly linked list. As an extra exercise, implement this for an encapsulated
IntList.

/** DLList version */
public void doubleInPlace() {
DLNode curr = sentinel.next;
while (curr != sentinel) {
DLNode dup = new DLNode(curr.item, curr, curr.next);
dup.prev.next = dup;
dup.next.prev = dup;
curr = dup.next;

}

/** Encapsulated IntList version */
public void doubleInPlace() {
IntListNode curr = head;
while (curr != null) {
IntListNode dup = new IntListNode(curr.item, curr.next);
curr.next = dup;
curr = dup.next;

Arrays
a) Consider the code below. Assume N is odd and positive.
public static int[][] genCoolGrid(int N) {
int[][] grid = new int[N][N];// Everything defaults to @ in int arrays
for (int 1 =0; i <= N/ 2; 1 +=1) {
for (int § = (N F2) ~4; I<=(NSf2)Yy+ 13] +=21) {
grid[i][]] = 8;
grid[N - 1 - i][]] = 8;

}
} return grid; /* sorry, low on space, bad style, but works! */
}
Show the return value of genCoolGrid(5) in the boxes below. Note: top left is grid[@][@].

grid[e][e] |° e ’ ° - grid[e][4]
(%] 8 8 8 (%]
8 8 8 8 8
(5] 8 8 8 (%]

grid[4][e] |© @ 8 @ @ grid[4][4]

Solutions that left the ©’s blank were given almost-full points.

JAVA GRAB-BAG

Q1. What would Java Print?

Code

public class Fastest {
String map;
public Fastest copy() {

}

public static void main(String[] args) {

3

map = "Possible";
return this;

Fastest mapl = new Fastest();
mapl.map = "BGH";

Fastest map2 = mapl.copy();
System.out.println(mapl.map);
map2.map = "Lost Temple";
System.out.println(map2.map);

public class Ketchup {

public void friend(int ketchup) {
int tomato = ((ketchup + 4) / 2);

}

public static void main(String[] args) {

}

System.out.println(tomato);

Ketchup ash = new Ketchup();
friend(4);

public class Thyme {
public static String zoo = "zoo";

public void gul(String dan) {

}

public static void main(String[] args) {

dan = dan + this.zoo;
zoo = dan;
System.out.println(dan);

Thyme herb = new Thyme();
herb.gul("hand");
herb.gul("hand");

Output

Possible
Lost Temple

Compile-Time error: Cannot
access a non-static method
from a static context

handzoo
handhandzoo

Login:

public class Gateway { Produced stalker
int id; Runtime error:

double location;) ArrayIndexOutOfBoundsExceptio
Object[] productionQ = new Object[3]; -

public void processQueue() {
for (int i = 1; i <= productionQ.length; i++) {
produce(productionQ[i]);
}
s

public void produce(Object unit) {
if (unit != null)
System.out.println("Produced " +
unit.toString());
}

public static void main(String[] args) {
Gateway gw = new Gateway();
gw.productionQ[@] = "zealot";
gw.productionQ[1] "stalker”;
gw.processQueue();

Q2. Flibrocon

4. Flirbocon (12 points). Consider the declarations below. Assume that Falcon extends Bird.
Bird bird = new Falcon();
Falcon falcon = (Falcon) bird;

Consider the following possible features for the Bird and Falcon classes. linciiiin

Assume that all methods are instance methods (not static!). : .
Bird::gulgate(Bird)

F1. The Bird: :gulgate(Bird) method exists.' specifies a method called

F2. The Bird: :gulgate(Falcon) method exists. gulgate with parameter

F3. The Falcon: :gulgate(Bird) method exists. of type Bird from the

F4. The Falcon: :gulgate(Falcon) method exists. Birct clase

a) Suppose we make a call to bird.gulgate(bird);

Which features are sufficient ALONE for this call to compile? For example if feature F3 or feature F4
alone will allow this call to compile, fill in the F3 and F4 boxes.

X O [m O

F1 F2 F3 F4 Impossible
Select a set of features such that this call executes the Bird: :gulgate(Bird) method. For example, if
having features F2 and F4 only (and not F1 or F3) would result in Bird: :gulgate(Bird) being
executed, check boxes F2 and F4 only.

X O O O O

Fl ¥z F3 F4 Impossible
Select a set of features such that this call executes the Falcon: :gulgate(Bird) method.

X O X m [1]

Fl F2 F3 F4 Impossible

b) Suppose we make a call to falcon.gulgate(falcon);

Which features are sufficient ALONE for this call to compile?
X X X X O
Fl F2 F3 F4 Impossible
Select a set of features such that this call executes the Bird: :gulgate(Bird) method.
X O O O O
F1 F2 F3 F4 Impossible
Select a set of features such that this call executes the Bird: :gulgate(Falcon) method.
O X O | O
F1 F2 F3 F4 Impossible
Select a set of features such that this call executes the Falcon: :gulgate(Bird) method.
] O X O O
F1 F2 F3 F4 Impossible
Select a set of features such that this call executes the Falcon: :gulgate(Falcon) method.
[T O O X O
F1 F2 F3 F4 Impossible

1In other words, the Bird class has a method with the signature gulgate(Bird)

Q3. What Would Java Display?

i | System.out.println("Part a:");
2 | ## Part a:

4 |Monster m = new Monster();

s | /* Static type of m: Monster

6 Dynamic type of m: Monster x/
v | //Muahahahaha!!!

s [m.mash(m);

i | f* mash is a static method, look at m’'s static type to determine method called. =*/
11 | //Monster:

12 |//I go blargh

iz | //I am 5 spooky

15 | System.out.println("Part b:");
s | //Part b:

18 | Monster g = new Ghoul ();

19 | /% Static type of g: Monster

20 Dynamic type of g: Ghoul =/

21 [/* Always an implicit call to super() in subclass’s constructor. */
22 | //Muahahaha

2a [//1 am a ghoul.

25 | g.mash(g);

26 | /* Again, mash is a static method. Look at g’s static type,.
27 Chooses line 36 from original code. =%/

28 | //Monster:

29 [/* On line 38 from original code, m’s dynamic type is ghoul,
30 so will choose Ghoul’s spook. =*/

a1 [//I°m so ghoul: blargh

sz [//1 am 5 spooky.

32
34 | System.out.println("Part c:");
ss | //Part c:

36
ar |g.spookFactor = 19;

sa |/* spookFactor is a declared as a static int.

39 Test yourself: if you change this to a nonstatic int,

40 how is the output of this program different?

41 Note: When looking for methods, java looks at the dynamic type.
42 When looking for fields, java looks at the static type. =*/

43
44 |m.mash(m);
a5 | /* Again, looks at m’s static type (Monster), and selects line 36

48 from the original code.
47 m’s dynamic type is Monster so line 38 from the original code
48 will call Monster’s spook. x/

a9 | //Monster:
so [//I go blargh
s1 [//I am 1@ spooky.

s3 | System.out.println{"Part d:");
sa |//Part d:

s6 | Ghoul ghastly = new Ghoul();
57 | /* ghastly static: Ghoul,
58 ghastly dynamic: Ghoul =/

sa | //Muahahaha!!!
o |//1 am a ghoul.

2 |m = ghastly;

s | /* Now, m static: Monster,
64 m dynamic: Ghoul=*/

65
a6 | ghastly = (Ghoul) m;

v |/* This does not change the static type of m! =/

69 | ghastly.haunt();

70 | /* This is a dynamic method lookup, since haunt is not a static method.
71 Line 1@ from the original code calls ghastly’s static type’s mash,
72 which is Ghoul's mash method, since mash is a static method. =*/

7a | //ERRERERRRRERRR

7a | //boogity boo:

s | //I1'm so ghoul: blargh

7« | //1 am 1@ spooky.

78 |m.mash(ghastly);
7ra | /% m’s static type is Monster, so it calls Monster’s mash.

80 m’'s dynamic type is Ghoul so line 38 in the original code
81 calls Ghoul’s spook.
a2 | *f

g3 |//I'm so ghoul: blargh
sa |//1 am 1@ spooky.

