
Final Review

Heaps

• Motivation: What if we always want to find the minimum or maximum element?

• Keep high priority items at the top

– Min heap: high priority corresponds to low priority value

– Max heap: high priority corresponds to high priority value

– Notice the difference between priority and priority value!

• Represented as a binary tree with two more properties:

– Complete: no empty spaces other than on the right-hand side of the bottommost level;
height will be Θ(logN) where N is the number of nodes

– (Min/Max)-heap property: for a particular node n, the children of n must have (greater/-
lesser) priority value than n; the root will always contain the (lowest/highest) priority
value element

• Methods

– peek(): returns (but does not remove) the item with the highest priority; runtime is
Θ(1)

– removeMin(): returns (and does remove) the item with the highest priority; runtime is
O(logN)

∗ Take the item in the bottom-rightmost position and replace the value at the root

∗ Bubble down the new root value

– insert(T item, int priorityVal): Insert the item with priority value of priorityVal
into the heap; runtime is O(logN)

∗ Insert the item in the first open bottom-left position

∗ Bubble up the new inserted value

• Bubbling (in a min-heap)

– Bubble up: while the priority value of a particular node n is less than the priority value
of its parent, swap the two

– Bubble down: while the priority value of a particular node n is greater than the priority
value of its child/children, swap the two (pick the lesser of the children if both have
priority value less than n)
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• Representation

– Number each element in the heap, starting from 1, left to right top to bottom, this will
represent the index of the item in the array

– For a particular node at index i :

∗ Parent is at index i
2

∗ Left child is at index 2i

∗ Right child is at index 2i+ 1

• PriorityQueue<T>

– Implemented with a min heap, methods include T poll(), T peek(), void push(T

item)

– Can use own Comparator object to change how the PriorityQueue organizes elements

Practice Problems

1. What is the size of the largest binary min heap that is also a valid BST? Draw an example
assuming all keys are letters from the English alphabet. Assume the heap has no duplicate
elements

2. What is the size of the largest binary max heap that is also a valid BST? Draw an example
assuming all keys are letters from the English alphabet. Assume the heap has no duplicate
elements.

3. What is the size of the largest binary min heap in which the fifth largest element is a child
of the root? You do not need to draw an example. Assume the heap has no duplicate
elements.
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Graph Traversals

BFS/DFS

Idea: We must look through all the values of our graph. So, given some starting point, we do a
BFS/DFS traversal with the caveat that we now track what vertices we’ve visited before (to avoid
cycles). Below is the code for DFS. For BFS, we need only replace that Stack fringe with a Queue

fringe.

public void dfs() {

Stack fringe = new Stack();

Set visited = new Set();

fringe.push(startVertex);

while (!fringe.isEmpty()) {

Vertex v = fringe.pop();

if (!visited.contains(v)) {

process(v); //Do something with v

for (Vertex neighbor: v.neighbors) {

fringe.push(neighbor);

}

visited.add(v);

}

}

}

Topological Sort

Idea: Given a directed, acyclic graph, how do we ’sort’ the vertices based on their dependencies on
one another?

public void topologicalSort() {

Stack fringe = new Stack();

Map currentInDegree = new Map<Vertex, Integer>();

while (!fringe.isEmpty()) {

Vertex v = fringe.pop();

process(v); //Do something with v

for (Vertex neighbor: v.neighbors) {

currentInDegree(neighbor) -= 1; //Not actual Java code

if (currentInDegree(neighbor) == 0) {

fringe.push(neighbor);

}

}

}

}
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Dijkstra’s Algorithm

Runtime: O((|V |+ |E|) log(|V |))
Important Assumption: When a vertex is removed from the fringe, we assume we have then found
the shortest path to that vertex. Thus, we will no longer try to update the shortest path to that
vertex; the path is finalized.

Pseudocode

• Initializing data structures

1. Initialize the following structures:

– fringe, a priority queue ordered by a vertex’s distance from the start vertex

– distanceMap, a mapping between vertex and distance from the start vertex

– predecessorMap, a mapping between vertex and previous vertex

2. Add the start vertex to fringe and distanceMap with distance 0

3. For all other vertices, add them to fringe and the distanceMap with distance infinity

• While-Loop (processing the shortest paths)

1. Pop off a vertex v from fringe

2. Loop over each neighbor n of v:

(a) Let newDistance = distanceMap[v] + edge(v, n)

(b) If newDistance < distanceMap[n], then
(1) Update the priority value of n in fringe and distance in distanceMap to be
newDistance

(2) Update predecessorMap so that the previous vertex of n is v

Practice Problems

1. Consider a weighted, directed graph G with distinct and positive edge weights, a start vertex
s and a target vertex t. Asssume that G contains at least 3 vertices and that every vertex is
reachable form s.

• (T/F) Any shortest s→ t path must include the lightest edge.

• (T/F) Any shortest s→ t path must include the second lightest edge.

• (T/F) Any shortest s→ t path must exclude the heaviest edge.

• (T/F) The shortest s→ t path is unique.
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2. The runtime for Dijkstra’s algorithm is O((V + E) log V ). However, this is specific only to
binary heaps. Let’s provide a more general runtime bound. Suppose we have a priority queue
backed by some arbitrary heap implementation. Given that this unknown heap contains N
elements, suppose the runtime of remove-min is f(N) and the runtime of change-priority is
g(N).

(a) What is the runtime of Dijkstra’s in terms of f(V ) and g(V )?

(b) Turns out the optimal version of Dijkstra’s algorithm uses something called a fibonacci
heap. The fibonacci heap has amortized Θ(1) change-priority, and Θ(log(N)) remove-
min. What is the runtime of Dijkstra’s algorithm?
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Sorting Algorithms

Comparison-Based Sorts

• Selection Sort

– Keep a sorted and unsorted portion, initialize the sorted portion to nothing and the
unsorted portion to the entire list

– ‘Select’ the minimum value from the unsorted portion and append it to the end of the
sorted portion

– Tips to identify: The minimum item will always move to the sorted portion after an
iteration. The sortion portion (AKA, the beginning of the list) will hold the final ordering
of the elements at every iteration.

• Insertion Sort

– Inversion: any two elements that are in the wrong place relative to each other

– Insertion sort sorts elements by removing all inversions so the list is sorted

– Keep a sorted and unsorted portion, initialize the sorted portion to nothing and the
unsorted portion to the entire list

– For the first element of the unsorted portion, ‘insert’ it into the correct position in the
sorted list by continuously comparing and swapping with the element before it

– Tip to identify: In intermediate steps, the front of the list will contain the items in sorted
order, though it may not be the elements in the final sorted order. In other words, the
sorted portion of the list grows, but does not always contain the final sorted elements.

• Merge Sort

– Split the list in half, recursively mergeSort each half, then merge the halves together

– For this class, assume is stable

– Tip to identify: Items will not cross the middle boundary/partition until the last step.

• Quicksort

– Choose a pivot element (pivot choice is key here!) and partition the list into elements less
than the pivot and elements greater than the pivot, recursively quickSort each partition

– For this class, assume is unstable

– Tip to identify: Use the pivot specified to see if the partitions are what is expected.

• Heapsort

– Throw all elements into a max heap, remove the root and swap places with the newly
freed spot in the heap

– Can use bottom-up heapification to heapify the elements in linear time

– Tip to identify: Will become sorted starting from the end of the list.
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Counting-Based Sorts

Radix Sort

• Sort the elements digit by digit based on the radix by running counting sort on each digit

• LSD (least significant digit):

– Run counting sort on the rightmost digit and move towards the left

– Used more in practice, stable sort, can be done iteratively

• MSD (most significant digit):

– Run counting sort on the leftmost digit, and repeat towards the right

– Harder to implement, usually done recursively which can use a lot of space on the stack,
unstable if done in place due to swapping elements when reordering

Sorting Runtimes

Algorithm Best-case Scenario
Best-case
Runtime

Worst-case Scenario
Worst-case
Runtime

Heap Sort

Quicksort

Merge Sort

Selection Sort

Insertion Sort

LSD Radix Sort

MSD Radix Sort
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Practice Problems

1. Give an example of when insertion sort is more efficient than merge sort.

2. When would you use merge sort over quicksort?

3. When would you use radix sort over a comparison sort?

4. You have an array of integers with a length of N , where the maximum number of digits is
given by K. Suppose that K >> N (that is, K is much larger than N). What sort could you
use?

5. Assume for the previous question that you used LSD radix sort. What is the runtime?

6. Suppose you are given an integer array with length N such that there are N −
√
N copies of

the minimum element located in the front of the array. What is the worst case runtime of
insertion sort on this list?

7. For the same construction, what is the worst case runtime of selection sort?
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Disjoint Sets

Disjoint sets are used to determine what sets, or groups, elements belong in to. Our main goal
with implementing a disjoint set is to be able to check whether or not two elements are in the same
set, and to be able to merge two sets together. You can also extend this feature to checking the
connectivity of two elements (think of Kruskal’s algorithm, for instance). Thus, there are three
operations we want our disjoint set to support: makeSet, find, and union.

Weighted Quick-Union trees are a way to implement disjoint sets. In WQU trees, we will rep-
resent sets as a tree-like structure. each element is itself a node, that may point to another node.
The root of any tree acts as the ’representative’ of the set. Let us examine how the disjoint set
operations are implemented in WQU trees:

• find(n): find and return the root node of n

– Path Compression optimization:
As you follow the parent pointers from n to the root, reassign the parent pointers of n
and all other nodes you see along the way to be the root.

• union(a, b): merge the set of a with the set of b

1. Let root1 = find(a)

2. Let root2 = find(b)

3. Union by size optimization:
If root2 has a smaller set size than root1, then set the parent pointer of root2 to point
to root1.
Else, set the parent pointer of root1 to point to root2.

Notice that both of the optimizations have the goal of preventing the tree from getting too tall.

Runtime (including both optimizations):

• One call to find:
Worst case: Θ(log(n))
Best case: Θ(1)

• One call to union:
Worst case: Θ(log(n))
Best case: Θ(1)

• For f calls to find and u calls to union:
Essentially Θ(u+ f ∗ α(f + u, u))

Where α is the inverse Ackerman function, a function that grows veeeeeeeeeeeeerrrrrrrrrryyyyyyyyyy
slowly.
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Minimum Spanning Trees

A spanning tree of a graph is a tree that connects all vertices of the graph. We define the weight of
a spanning tree as the sum of the weights of all edges in the tree. A minimum spanning tree is
a spanning tree of a graph that has the least weight. Note that any tree that connects V vertices
will have V − 1 edges.

We can use Kruskal’s algorithm to find the MST. The main idea of Kruskal’s algorithm is to
successively select edges with the smallest weight to add to our tree, until a MST is formed. Thus,
given a graph G, Kruskal’s algorithm works as follows:

1. Let T be an empty list of edges. This is where you will store the edges for your final MST.

2. Make a sorted list sortedEdges of all the edges in G, from smallest to greatest.

3. For each edge (u→w) in sortedEdges:

(a) If u and w are not already connected by the edges in T , then add the edge (u→w) to T .

(b) If u and w are already connected by the edges in T , then continue.

We can see that the runtime of Kruskal’s algorithm is dependent on the sorting step in (2), and
the check in (3a/b) to see if two vertices are already connected by T . The sorting step in (2) takes
O(E logE). By using WQU trees with path compression to accomplish steps (3a/b), a single check
to see if two vertices are already connected by T will take time proportional to α(V ). Since this
factor is extremely small, the total runtime of Kruskal’s ends up being O(E logE) due to the sorting
step.

Practice Problems

1. In the graph below, some of the edge weights are known, while the rest are unknown. List all
edges that must belong to a minimum spanning tree, regardless of what the unknown edge
weights turn out to be. Justify your answers briefly.
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2. Given a minimum spanning tree T of a weighted graph G, describe an O(V ) algorithm for
determining whether or not T remains a MST after an edge (x, y) of weight w is added.

3. True or False: Suppose G is a graph and T is a MST of G. If we decrease the weight of any
edge in T , then T is still a MST.

4. Suppose instead of decreasing the weight of an edge in the MST, we decrease the weight of
any random edge not in the MST. Give an efficient algorithm for finding the MST in the
modified graph.

5. Consider a weighted, undirected graph G with distinct and positive edge weights. Assume
that G contains at least 3 vertices and is connected.

• (T/F) Any MST must include the lightest edge.

• (T/F) Any MST must include the second lightest edge.

• (T/F) Any MST must exclude the heaviest edge.

• (T/F) The MST is unique.
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Regular Expressions

• Special Characters

– + matches one or more of the preceding character (greedy operator)

– * matches zero or more of the preceding character (greedy operator)

– ? matches zero or one of the preceding character (greedy operator), ? after a greedy
operator will make the operator reluctant

– {n} matches exactly n instances of the preceding character

– {n, m} matches at least n but no more than m instances of the preceding character

– . matches any character

– [...] denotes a character class, matches one character that is described within the brackets

– (...) denotes a capturing group, can be used to group characters together

– To match special characters (Strings including periods or question marks), must escape
them with a backslash

• Pattern

– Pattern Pattern.compile(String s): returns a Pattern that is represented by s

– Matcher matcher(String phraseToMatch): returns a Matcher that checks if phraseToMatch
matches the Pattern

• Matcher

– boolean matches(): returns true if Matcher’s Pattern matches the given phraseToMatch

entirely

– boolean find(): returns true if Matcher’s Pattern matches a substring of the given
phraseToMatch (will only match up to the substring, subsequent calls to find() may
result in more matches in the same string)

– String group(int index): returns the String corresponding to the group indicated
by index, index 0 will correspond to the entire matched phrase

• Greedy vs. Reluctant

– Some operators (+, *, ?) will match as much as possible

– Want to match the ‘lo000l’ in ‘lo000l halo’? If our pattern is ‘l.*l’, will actually match
‘lo000l hal’ because the * operator will match as much as possible

– Use the ? operator after a greedy operator to make it reluctant (match as little as possible
while still following the pattern described, in above example, will match ‘lo000l‘)

• Capturing

– Can use (...) and group method to return certain parts of a matched substring

– group(1) will refer to the first grouped elements in the String, same idea with 2, 3, etc.
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Practice Problems

1. Write the regex that matches any string that has an odd number of a’s and ends with b.

2. Write a regex that matches any binary string of length exactly 8, 16, 32, or 64.

3. Write the regex that matches any string with the word ”banana” in it.

4. A certain type of bracketed list consists of words composed of one or more lower-case letters
alternating with unsigned decimal numerals and separated with commas:
[]

[wolf, 12, cat, 41]

[dog, 9001, cat]

As illustrated, commas may be followed (but not preceded) by blanks, and the list may
have odd length (ending in a word with no following numeral.) There are no spaces around
the [ ] braces. Write the Java pattern that matches an alternating list
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