BST Worksheet

1 Definition

%. A binary search tree has the following invariant: for any node k in the tree, all nodes with smaller values are in the
left subtree of k, and all nodes with larger values are in the right subtree of k.

2 Construction

Takeaway: order of construction affects runtime.
Consider a tree of elements 1,2,3,4,5,6,7

Draw the BST resulting from insertion in the order 1,2,3,4,5,6,7

Draw the BST resulting from insertion in the order 4, 3,5,2,6,1,7

Now, consider the runtime of contains for any arbitrary BST. What is the worst case and best case?

3 BST Traversal

Consider the 'bushy’ tree from above. What is its...

Pre-order Traversal:
In-order Traversal:
Post-order Traversal:

Note: be familiar with the recursion order of each of these traversals.

4 BST Deletion

Process:
1. Let N be the node to be deleted.
2. If N has no children, simply remove N from the tree
3. If N has one child, remove N and replace it with its child

4. Else, let us define S as the in-order successor of N. Copy the value of S into N, and remove S.

5 Practice Q1

The following code is meant to check if a given binary tree is a binary search tree. However, for some binary trees it is
returning the wrong answer. Explain why, and give an example of a binary tree for which the method fails.

public static boolean isBST (TreeNode T) {

if (T == null) {
return true;

} else if (T.left != null && T.left.val > T.val) {
return false;

} else if (T.right != null && T.right.val < T.val) {
return false;

} else {
return isBST(T.left) && isBST(T.right);

}

6 Practice Q2

Define a root-to-leaf path as a sequence of nodes from the root of a tree to one of its leaves. Write a method printSumPaths (TreeNode
T, int k) that prints out all root-to-leaf paths whose values sum to k. For example, if RootNode is the binary tree rooted

in 10 in the diagram below and k is 13, then the program will print out 10 2 1 on one line and 10 4 -1 on a another.

Provide your solution by filling in the code below:

public static void printSumpaths(TreeNode T, int k) {
if (T != null) {

sumPaths ()
}
}
public static void sumPaths() {
}

Solutions to practice questions are available on the Fall 2016 CS61B website, under Discussion 8 Solutions
https://inst.eecs.berkeley.edu/ cs61b/fal6/materials/disc/discussion8sol.pdf

